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Abstract

In this paper, we describe an architecture for designing fuzzy con-
trollers through a hierarchical process of control rule acquisition and
by using special classes of neural network learning techniques. Hier-
archical development of the fuzzy control rules is a useful technique
which has been used earlier in designing a fuzzy controller with in-
teractive goals [5]. Also, we introduce a new method for learning
to refine a fuzzy logic controller. A reinforcement learning technique
is used in conjunction with a multi-layer neural network model of a
fuzzy controller. The model learns by updating its prediction of the
plant’s behavior and is related to the Sutton’s Temporal Difference
(TD) method. The method proposed here has the advantage of using
the control knowledge of an experienced operator and fine-tuning it
through the process of learning. The approach is applied to a cart-pole
balancing system.



1 Introduction

Fuzzy logic controllers have recently experienced a huge commercial success
[12,6]. These controllers are usually developed based on the knowledge of
human expert operators[4]. However, starting with the Self Organizing Con-
trol (SOC) techniques of Mamdani and his students (e.g., [9]), the need for
research in developing fuzzy logic controllers which can learn from experience
has been realized (e.g., [8]). The learning task may include the identification
of the main control parameters (i.e., related to the system identification in
conventional and modern control theory) or development and fine-tuning of
the fuzzy memberships used in the control rules. In this paper, we concen-
trate on the latter learning task and develop a model which can learn to
adjust the fuzzy memberships of the linguistic labels.

The organization of this paper is as follows. We first discuss the general
model of our NeuroFuzzy Controller (NFC) and then we apply this model to
the control of a cart-pole balancing system. Finally, we compare this model
with other related research works such as the credit assignment in artificial
intelligence [10], Barto et. al.’s AHC model [3], and Lee and Berenji’s single
layer model [8].

2 NFC: A Model for Intelligent Control

Figure 1 illustrates the general model of our intelligent controller. The two
main elements in this model are the Action-state Evaluation Network (AEN),
which acts as a critic and provides advice to the main controller, and the
Action Selection Network (ASN) which includes a fuzzy controller.

2.1 Action-state Evaluation Network (AEN)

The only information received by the AEN is the state of the plant in terms
of its state variables and whether a failure has occurred or not. Figure 2
illustrates the structure of an evaluation network including m;, hidden units
and n input units from the environment (i.e., Zo, 1, z,). The triangles
represent the calculation-center [1] of the units where the updating equations
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Figure 1: The NFC Model for Intelligent Control
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Figure 2: The Evaluation Network

(to be described bellow) are applied. The input from the environment is
provided to all hidden units and output units while an interconnection weight
exists at every intersection. Therefore in this network, hidden units receive
n + 1 inputs and have n + 1 weights each while the output units receive
n+ 1+ my inputs and have n + 1 + mj, weights. If A, B, C are the matrices
of connection weights, then the output of the evaluation network is:

olta ta] = ilb.-[tllz.-[tzl +:V_l:c.-[t11ya[tl,t=1 1)
where .
yilt1, t2) = 9(; aij[t:)z;[ta]) (2)
and 1
o) = 1o 3)

In the above equations, double time dependencies are used to avoid in-
stabilities in the updating of weights [2]. This network evaluates the action
recommended by the action network as a function of the failure signal and
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Figure 3: The Action Selection Network

the change in state evaluation:

0 if state at time ¢t + 1 is a start state;
Ft+1] =< [t + 1] —v[t,¢] if state at time t+1 is a failure state;
rlt + 1) + yv[t,t + 1] — v]t,t] otherwise
(4)
The weights in this network are modified according to the followings:
bilt + 1] = bi[t] + BF(t + 1ilt] ()
at + 1] = ct] + B[t + uilt, ¢] (6)

a;j[t + 1} = ai;[t] + But[t + uilt, t])(1 — wilt, t]) sgn(cilt])z;{t] (7)
where 0 <y <1 and 8,8, > 0.

2.2 Action Selection Network (ASN)

The Action Selection Network (ASN) includes a fuzzy controller which con-
sists of a fuzzifier, a rule base and decision making logic, and a defuzzifier all



represented in a network. The design of the rule base for this fuzzy controller
follows the algorithm developed in [5] which is based on a hierarchical process
considering the interaction of multiple goals.

In this paper, the above fuzzy controller is modeled by a two layered
neural network where the input layer includes the fuzzifier whose task is to
match the values of the input variables against the labels used in the fuzzy
control rules. The hidden layer in this network corresponds to the rules
used in the controller and includes the decision making logic. The output
layer includes the decoding (defuzzification) process. In the following, a brief
explanation on fuzzy logic control is provided. However, for more detailed
information, see [4]. The action selector is shown in Figure 3, where the
matrices of connection weights are D, E, and F. The individual member
of these matrices are labelled d;;, €;, and f;. In this network, the hidden
nodes represent a fuzzy control rule in the following manner. The inputs to
the node are the preconditions of a rule and the output of the node is its
conclusion. We assume a Multi Input Single Output (MISO) control system.
The output layer combines the conclusion of the individual rules by using
the Center Of Area (COA) method [4] which is described below. Let w(3)
represent the degree that rule i is satisfied by the input state variables in X
which means

w(i) = Min{dipii(z1), dizpia(z2), -, dinptin(zn)} (8)

where 1 (z,) represents the degree of membership of the input z; in a fuzzy
set representing the label used in the first precondition of the rule i and n
is the number of inputs. Then m(i), which represents the result of applying
the w(¢) on the conclusion of rule i, is calculated from

w(i) = pe;(m(i)) (9)

where pic, represents the monotonic membership function of the label used
in the conclusion of rule i. The amount of the control action (i.e., u) is then
calculated by using the Center Of Area (COA) method as the following.

Assuming discretized membership functions, COA reveals
T fi x m(3) x w(i)

t = ! =1 J

0= TG < £

where my, is the number of nodes in the hidden layer which is equivalent to
the number of rules used in the model. We define two more functions here:

(10)



alt] = g(é &lt)zilt) (11)

Pl = o(3_ el + 3% ) (12)
and 1, with probability plt);
qltl = { 0: with IIZrobabilitfr f —,p[t] (13)

The connection weights are updated according to the followings:

eilt + 1] = eit] + p(t + 1)(q[t] — plt])ilt] (14)
filt+ 1] = filt] + o[t + 1(gt] — plt])=(t] (15)
dijlt + 1] = dijft] + patt + U=lt](1 — zt)sgn(£it])(qlt] - plt])=;lt] (16)

where p and pp, > 0.

3 Applying NFC to Cart-Pole Balancing

In this section, we describe the cart-pole balancing problem and apply the
NFC model to its control.

3.1 The Cart-Pole balancing problem

In this system a pole is hinged to a motor-driven cart which moves on rail
tracks to its right or its left. The pole has only one degree of freedom (rotation
about the hinge point). The primary control tasks are to keep the pole
vertically balanced and keep the cart within the rail tracks boundaries.

Four state variables are used to describe the system status, and one van-
able represents the force applied to the cart. These are:



z horizontal position of the cart on the rail

¢ : velocity of the cart

§ : angle of the pole with respect to the vertical line
é angular velocity of pole

u force applied to the cart.

We assume that a failure happens when | 6 |> 12 degrees or | z [> 2.4
meters. Also, we assume that the equations of motion of the cart-pole system
are not known to the controller and only a vector describing the cart-pole
system’s state at each time step is known. In other words, the cart-pole
balancing system is treated as a black box by the learning system.

Figure 4 presents the model of NFC as it is applied to this problem.
Among the components of this model, we only describe the Action Selection

Network here.

3.2 The Action Selection Network

The action network was modeled by defining a multi-layered neural network
which receives reinforcements from the evaluation network. This network,
as shown in Figure 4, consists of 5 input nodes representing the four state
variables and a bias unit, 13 nodes in the hidden layer, and an output node.
The nodes in the hidden layer correspond to the fuzzy control rules. For
example, node 1 corresponds to the rule:

IF @ is Positive and 8 is Positive Then Force is Positive-Large.

As mentioned earlier, the rule base of a fuzzy controller consists of rules which
are described using linguistic variables. As shown in Figure 5(a) and Figure
5(b), three labels are used here to linguistically define the value of the state
variables: Positive (P), Zero (Z), and Negative (N). Seven labels are used
to linguistically define the value of force recommended by each control rule:
Positive Large (PL), Positive Medium (PM), Positive Small (PS), Zero (ZE),
Negative Small (NS), Negative Medium (NM), and Negative Large (NL).
The forward calculations in this network is based on fuzzy logic control as
described in [5], where nine fuzzy control rules were written for balancing
the pole vertically and four control rules were used in positioning the cart at
a specific location on the rail tracks. The presence of a connection between



iy
5,
‘
"
/

Vv’ £y

XTSI ‘_“-—-<:
‘ -

'

——-. /
\\;__’AQ'
S oS

\
. Y
Predict r [
E 1 updating g weights

‘®

[

(=]

0

[+8]

[

2

X1 S

» A‘O\ [

F
x3 — Cart-pole
stem_
x4
XS
D
1
1

Input Fuzzification Rule Base and Decoding Output
State (Encoding) Decisfon Making Logic | (defuzzification) | Action
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Figure 5: (a)- Three qualitative levels for 6,6, z, and £, (b)- Seven qualitative
levels for F

an input node j and a node i in the hidden layer indicates that the linguistic
value of the input corresponding to node i is used as a precondition in rule
3. As shown in Figure 4, the first nine rules, corresponding to the hidden
layer nodes 1 to 9, are rules with two preconditions (i.e., 8, and §). The rules
10 through 13 include four preconditions representing the linguistic values
of 8, 4, z, and 2. In this network, D represents the matrix of connection
weights between the input layer and the hidden layer, and F represents a
vector of connection weights between the hidden layer and the output node.
The amount of force applied to the cart is calculated using the equations (8)
to (10) as were given in the last section.

4 Relation to other research

Credit Assignment The evaluation network in our work is similar to the
Samuel’s early work on credit assignment [10]. The Adaptive Heuristic Critic
(AHC) model of Barto et. al. [3] provides a more general approach to credit
assignment which learns by updating the predictions of failures. If no failure
signal is present, the internal reinforcement provided by AHC is just the
difference between the successive predictions of failure. Recently, Sutton [11]
has formalized this method as the Temporal Difference methods.
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Anderson’s . Multi-layer networks We use the same structure as pro-
posed by Anderson [2], however, the action selection network in our model
is based on fuzzy logic control. Using the structure of a fuzzy controller,
Anderson’s approach is extended here to provide for the following attributes
in NFC.

o The continuous representation of the output value.

o The inclusion of the human expert operator’s control rules in terms of
hidden units in the action selection network.

It should be noted that Anderson’s goal in [1] was to discover the interesting
patterns and strategy learning schemes. Not much effort was spent on making
the process learn faster. In our work, although we allow some of the strategy
learning to happen automatically, we start from a knowledge base of fuzzy
control rules and fine-tune them as learning happens in the neural network.

Single Layer NeuroFuzzy Control Lee and Berenji (8] and Lee [7] have
used a single layer neural network which requires the identification of the
trace functions for keeping track of the visited states and their evaluations.
The generation of these trace function is a difficult task in larger control
problems. However, the approach suggested in the current paper does not
use trace functions. The neural network representation of the fuzzy control
rules in NFC allows faster development and faster learning. Also, in the
single layer model, only the generation of the output values were considered.
The preconditions of the fuzzy control rules were left untouched. However,
in NFC, based on reinforcements received from the environment, both the
preconditions and the conclusions of rules can be modified (i.e., fine-tuned).

5 Conclusion

A new model based on the reinforcement learning technique and fuzzy logic
control was proposed which is applicable to control problems for which the
analytical models of the process are unknown. The NFC model presented
here improves the previous models in neurofuzzy control by learning to fine-
tune the performance of a fuzzy logic controller.

1"
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